Product Line Overview

General Information

Cutler-Hammer® ${ }^{\circledR}$ Series G Molded Case Circuit Breakers provide increased performance in considerably less space than standard circuit breakers or comparable fusible devices.

The " G " signifies global applications: Series G circuit breakers are marked with UL, CSA, CE, IEC and KEMA KEUR listings. Other advantages include:

■ Field-fit accessories.

- Common accessories through 630 amperes.
- Electronic trip units from 20 to 2500 amperes.
■ UL-listed and IEC-rated, 30 mA ground fault/earth leakage modules.
■ Built-in ground fault protection down to 20 amperes.
The EG, JG and LG frames are designed around space-saving footprints. The NG and RG use the proven Cutler-Hammer Series C® ${ }^{\circledR}$ ND and RD designs but use metric threading on their line and load conductors.

Cutler-Hammer Series G Circuit Breakers meet applicable UL 489 and IEC 60947-2 standards.

The Cutler-Hammer Series G family includes five frame sizes in ratings from 15 to 2500 amperes. Series G offers a choice of several interrupting capacities up to 200 kA at 480 volts ac (200 kA at 240 volts ac).

Standard calibration is $40^{\circ} \mathrm{C}$. For applications in high ambient temperature conditions, $50^{\circ} \mathrm{C}$ factory calibration is available on thermal magnetic breakers (not UL).

The Most Logically Designed Contact Assembly

The flexibility and outstanding performance characteristics of CutlerHammer Circuit Breakers are made possible by the best contact designs in circuit breaker history. Our patented technology creates a high-speed "blow-open" action using the electromechanical forces produced by high-level fault currents.

Cutler-Hammer Circuit Breakers are operated by a toggle-type mechanism that is mechanically trip-free from the handle so that the contacts cannot be held closed against short circuit currents. Tripping due to overload or short circuits is clearly indicated by the position on the handle. This remarkably fast and dependable contact action is designed to enhance safety.

Thorough In-Plant Testing

The quality, dependability and reliability of every Cutler-Hammer Circuit Breaker is ensured by a thorough program of in-plant testing. Two calibration tests are conducted on every pole of every circuit breaker to verify the trip mechanism, operating mechanism, continuity and accuracy.

ISO Certification

Cutler-Hammer Circuit Breakers are manufactured in ISO^{\circledR} certified facilities.

Current Limiting Characteristics

Circuit breakers are current limiting because of their high repulsion contact arrangement and use of state-of-the-art arc extinguishing technology.
Eaton offers one of the most complete lines of current limiting breakers in the industry. The industrial breakers are available in current limiting versions with interrupting capacities up to 200 kA at 480 V without fuses in the same physical size as standard and high interrupting capacity breakers.

Operating Mechanisms

Cutler-Hammer Circuit Breakers have a toggle handle operating mechanism, which also serves as a switching position indicator. The indicator shows the positions of: ON, OFF and TRIPPED.

The toggle handle snaps into the TRIPPED position if the breaker is tripped by one of its overcurrent, short circuit, shunt or undervoltage releases. Before the circuit breaker can be reclosed following a trip-out, the toggle handle must be brought beyond the OFF position (RESET). The circuit breaker can then be reclosed.

As an additional switching position indicator for EG- to RG-Frame circuit breakers, there are two windows on the right and on the left of the toggle handle, in which the switching state is indicated by means of the colors red, green and white corresponding to the ON, OFF and TRIPPED positions respectively.

Figure 45-2. Positions of the Toggle Handle Drive

Product Line Overview

Standards and Certifications

Cutler-Hammer Molded Case Circuit Breakers from Eaton are designed to conform with the following international standards:

- Australian Standard AS 2184 and AS 3947-2 Molded Case Circuit Breakers.
- British Standards Institution Standard EN60947.2.
- International Electrotechnical Commission Recommendations IEC 60947.2 Circuit Breakers. C \in
■ Japanese T-Mark Standard Molded Case Circuit Breakers.
■ National Electrical Manufacturers Association Standards Publication No. AB1-1993 Molded Case Circuit Breakers.
- South African Bureau of Standards, Standard SANS 156, Standard Specification for Molded Case Circuit Breakers.
- Swiss Electro-Technical Association Standard SEV 947.2, Safety Regulations for Circuit Breakers.
- Union Technique de I'Electricite Standard NF C 63-120, Low Voltage Switchgear and Control Gear Circuit Breaker Requirements.
- Verband Deutscher Elektrotechnike (Association of German Electrical Engineers) Standard VDE 0660, Low Voltage Switchgear and Control Gear, Circuit Breakers.

Global Third-Party Certification

Certification marks ensure product compliance with the total standard via the third party witnessing of tests by globally recognized independent certification organizations.

KEMA is a highly recognized, independent international organization that offers certification and inspection facilities for equipment in many industries. The KEMA-KEUR mark is the highest certification an electrical product can receive from KEMA. Our IEC 60947-2 Molded Case Circuit Breakers are KEMA tested and certified. These breakers are also listed in accordance with UL® 489, as well as CSA C22.2 No. 5-02.

KEMA, UL and CSA provide ongoing follow-up testing and inspections to ensure that Cutler-Hammer Molded Case Circuit Breakers continue to meet their exacting standards.

General Information

Eaton's electrical business, under the Cutler-Hammer brand, offers the widest variety of molded case circuit breakers available today. Designed for electrical and machinery OEMs serving a range of industries and applications, these proven designs incorporate the latest in innovation with the high reliability that has been our hallmark since the advent of the circuit breaker in the 1920s.

The Series C family ranges from 15 2500 amperes, and includes thermalmagnetic breakers, electronic trip breakers, molded case switches, motor circuit protectors, and specially designed breakers for Engine Generator, DC and mining applications.
The new Series G line features an average 35% size reduction, common field-installable internal accessories, and advanced trip unit functionality that eliminates the need for rating plugs. These breakers meet the requirements of UL, CSA, IEC, CCC and CE, allowing the OEM to standardize on a design that meets the needs of their global customer base.

Frame Sizes EG through LG

Electrical Characteristics

Table 45-2. Electrical Characteristics

Maximum Rated Current (Amperes)	EG								JG						LG					
	125, $160{ }^{(1)}$								250						400,630 (2)					
Breaker Type	B		E	S		H		C	E	S	H	C	U	X	E	S	H	C	U	X
Number of Poles	1	2,3,4	2,3,4	1	2,3,4	1	2,3,4	3,4	2,			3,4	3,4	3,4	3,4				3,4	3,4

Breaker Capacity (kA rms) ac $50-60 \mathrm{~Hz}$

(1) 125 amperes is the maximum UL and CSA rating for the EG.
(2) 630 amperes is not a UL or CSA listed rating. 600 amperes is the maximum UL and CSA listed rating for the LG.
(3) EG breaker rated 600/347 Vac.
(4) Two poles in series.
(5) Not suitable for dc application. 4-pole ground fault not available.
(6) 125 Vdc only for 1-pole breakers.

Circuit Breakers \& Supplementary Protectors 15-2500 Amperes for UL, CSA \& IEC Applications

Frame Sizes EG through RG

Table 45-3. EG through RG Electrical Characteristics

Technical Data	EG		JG		LG		NG	RG
Maximum Rated Current I_{n} Depending on the Version	160 A ${ }^{(1)}$		250 A		400, 630 A (2)		800, 1200, 1600 A (3)	1600, 2000, 2500 A
Rated Insulation Voltage U, According to IEC 60947-2 Main Conducting Paths Auxiliary Circuits	$\begin{aligned} & 500 \mathrm{Vac} \\ & 500 \mathrm{Vac} \end{aligned}$		750 Vac 690 Vac		$\begin{aligned} & 750 \mathrm{Vac} \\ & 690 \mathrm{Vac} \end{aligned}$		750 Vac 690 Vac	$\begin{aligned} & 750 \mathrm{Vac} \\ & 690 \mathrm{Vac} \end{aligned}$
Rated Impulse Withstand Voltage $\mathrm{U}_{\text {imp }}$ Main Conducting Paths Auxiliary Circuits	$\begin{aligned} & 6 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$		$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$		$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$		$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$
Rated Operational Voltage U_{e} IEC NEMA	$\begin{aligned} & 690 \mathrm{Vac} \\ & 600 \mathrm{Y} / 347 \mathrm{Vac} \end{aligned}$		$\begin{aligned} & 690 \mathrm{Vac} \\ & 600 \mathrm{Vac} \end{aligned}$		$\begin{aligned} & 690 \mathrm{Vac} \\ & 600 \mathrm{Vac} \end{aligned}$		690 Vac	$\begin{aligned} & 690 \mathrm{Vac} \\ & 600 \mathrm{Vac} \end{aligned}$
UL and CSA Listed	Yes ${ }^{4}$		Yes ${ }^{4}$		Yes ${ }^{4}$		Yes ${ }^{4}$	Yes ${ }^{4}$
Permissible Ambient Temperature	-20 to $+70^{\circ} \mathrm{C}$		-20 to $+70^{\circ} \mathrm{C}$		-20 to $+70^{\circ} \mathrm{C}$		-5 to $+60^{\circ} \mathrm{C}$	-5 to $+60^{\circ} \mathrm{C}$
Permissible Load for Various Ambient Temperatures Close to the Circuit Breaker, Related to the Rated Current of the Circuit Breaker Circuit Breakers for Plant Protection - At $40^{\circ} \mathrm{C}$ - At $50^{\circ} \mathrm{C}$ - At $55^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$ - At $70^{\circ} \mathrm{C}$	$\begin{array}{\|l} \mid \text { } \\ \\ \\ \\ 100 \% \\ 96 \% \\ 93 \% \\ 91 \% \\ 86 \% \end{array}$	(6) 100\% 92\% 87\% 83\% 73\%	(5) $\begin{array}{\|c} \hline 100 \% \\ 96 \% \\ 94 \% \\ 92 \% \\ 88 \% \\ \hline \end{array}$	(6) $\begin{array}{\|c} 100 \% \\ 94 \% \\ 90 \% \\ 87 \% \\ 80 \% \end{array}$	$\begin{array}{\|l} \mid \text { } \end{array}$	(6) 100\% 91\% 86\% 82\% 70\%	$\begin{aligned} & - \\ & 100 \% \\ & 91 \% \\ & 85 \% \\ & 81 \% \end{aligned}$	$\begin{aligned} & - \\ & \\ & 100 \% \\ & 91 \% \\ & 85 \% \\ & 81 \% \end{aligned}$
- Circuit Breakers for Motor Protection - At $40^{\circ} \mathrm{C}$ - At $50^{\circ} \mathrm{C}$ - At $55^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$ - At $70^{\circ} \mathrm{C}$	-		$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 100 \% \\ 90 \% \end{gathered}$		$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 100 \% \\ 90 \% \end{gathered}$		- -	-
Circuit Breakers for Starter Combinations and Isolating Circuit Breakers - At $40^{\circ} \mathrm{C}$ - At $50^{\circ} \mathrm{C}$ - At $55^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$ - At $70^{\circ} \mathrm{C}$	$\begin{array}{\|c} 100 \% \\ 100 \% \\ 96 \% \\ 91 \% \\ 86 \% \end{array}$		$\begin{gathered} 100 \% \\ 100 \% \\ 96 \% \\ 82 \% \\ 88 \% \end{gathered}$		$\begin{gathered} 100 \% \\ 100 \% \\ 95 \% \\ 90 \% \\ 84 \% \end{gathered}$		$\begin{gathered} \text { 100\% } \\ 91 \% \\ 85 \% \\ 81 \% \\ - \end{gathered}$	$\begin{gathered} 100 \% \\ 91 \% \\ 85 \% \\ 81 \% \end{gathered}$
Rated Short Circuit Breaking Capacity (dc) Not for Circuit Breakers for Motor Protection (Time Constant $\tau=10 \mathrm{rms}$) 2 Conducting Paths in Series For EG to LG up to 250 Vdc NEMA (Time Constant $\tau=8 \mathrm{rms}$) 2 Conducting Paths in Series 250 Vdc	$\begin{aligned} & 42 \mathrm{kA} \mathrm{~N} \\ & 42 \mathrm{kA} \mathrm{~N} \end{aligned}$		$\begin{aligned} & 42 \mathrm{kA} \mathrm{M} \\ & 42 \mathrm{kA} \mathrm{M} \end{aligned}$		$\begin{aligned} & 42 \mathrm{kA} \mathrm{~N} \\ & 42 \mathrm{kA} \mathrm{~N} \end{aligned}$		(7) (7) (7)	(7) (7) (7)
Main Switch Characteristics According to IEC 60947-2 in Combination with Lockable Rotary Drives	Yes		Yes		Yes		Yes	Yes
Rated Short Circuit Breaking Capacity According to IEC 60947-2 (at ac $50 / 60 \mathrm{~Hz}$)	Rated Short Circuit Breaking Capacity See Table 45-2 on Page 45-5							
Endurance (Operating Cycles)	10,000		10,000		8,000		3,000	3,000
Maximum Switching Frequency	$3001 / \mathrm{h}$		240 1/h		240 1/h		60 1/h	20 1/h

(1) 125 amperes is the maximum UL and CSA rating for the EG.
(2) 630 amperes is not a UL or CSA listed rating. 600 amperes is the maximum UL and CSA rating for the LG.
(3) 1200 amperes is the maximum UL and CSA rating for the NG.
${ }^{4}$ See footnotes for exceptions.
(5) Thermal overload release set to the lower value.
(6) Thermal overload release set to the upper value
(7) Not suitable for dc switching.

Circuit Breakers \& Supplementary Protectors 15-2500 Amperes for UL, CSA \& IEC Applications

Frame Sizes EG through RG

Table 45-3. EG through RG Electrical Characteristics (Continued)

Technical Data	EG	JG	LG		NG	RG
Conductor Cross Sections and Terminal Types for Main Conductors - Solid or Stranded - Finely Stranded with End Sleeve - Bus Bar Tightening Torque for Box Terminals Tightening Torque for Bus Bar Connection Pieces	Box Terminals 2.5 to $95 \mathrm{~mm}^{2}$ 2.5 to $50 / 70 \mathrm{~mm}^{2}$ 5.6 Nm 5.6 Nm	Box Terminals 50 to $150 \mathrm{~mm}^{2}$ 35 to $120 \mathrm{~mm}^{2}$ 20 Nm 15 Nm	Box Terminals 95 to $240 \mathrm{~mm}^{2}$ 70 to $150 \mathrm{~mm}^{2}$ 42 Nm 30 Nm	Flat Bar Terminals - - 600 A 31 Nm 6 Nm	Flat Bar Terminals - - Optional 31 Nm 50 Nm	Flat Bar Terminals Optional 20 Nm
Conductor Cross Sections for Auxiliary Circuits with Terminal Connection or Terminal Strip - Solid - Finely Stranded with End Sleeve - With Brought-out Cable Ends - Tightening Torque for Fitting Screws	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.82\left(\mathrm{AWG} \mathrm{18)mm}^{2}\right. \\ & 0.8 \text { to } 1.4 \mathrm{Nm} \end{aligned}$	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.82 \text { (AWG 18) } \mathrm{mm}^{2} \\ & 0.8 \text { to } 1.4 \mathrm{Nm} \end{aligned}$		Up to $2 \times 4 \mathrm{~mm}^{2}$ Up to $2 \times 2.5 \mathrm{~mm}^{2}$ 0.82 (AWG 18) mm² 0.8 to 1.4 Nm	Up to $2 \times 4 \mathrm{~mm}^{2}$ Up to $2 \times 2.5 \mathrm{~mm}^{2}$ 0.82 (AWG 18) mm² 0.8 to 1.4 Nm
Power Loss per Circuit Breaker at Maximum Rated Current In (The Power Losses of the Undervoltage Releases ("r" Releases) Must Be Observed if Necessary) at Three-Phase Symmetrical Load) - For Plant Protection - As Isolating Circuit Breaker For Starter Combinations For Motor Protection	$\begin{aligned} & 40 \mathrm{~W} \\ & 40 \mathrm{~W} \\ & 40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \end{aligned}$	400 A: 65 W 65 W 65 W 65 W	$\begin{aligned} & 600 \mathrm{~A}: \\ & 120 \mathrm{~W} \\ & 120 \mathrm{~W} \\ & 120 \mathrm{~W} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 87 / 210 \mathrm{~W} \\ & 87 / 210 \mathrm{~W} \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 220 / 270 / 400 \mathrm{~W} \\ 220 / 270 / 400 \mathrm{~W} \end{array}$
Permissible Mounting Position						${ }^{\circ} \mathrm{O}$ 。
Arc Spacing Suitable for Reverse-Feed Applications	Yes (Except HMCPE)	Yes	Yes		Yes	Yes

Circuit Breakers \& Supplementary Protectors
15 - 2500 Amperes for UL, CSA \& IEC Applications

Frame Sizes EG through RG

Table 45-3. EG through RG Electrical Characteristics (Continued)

Technical Data	EG	JG	LG	NG	RG
Auxiliary Switches					
Rated Thermal Current $l_{\text {th }}$ Rated Making Capacity	$\begin{array}{r} 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{array}{\|r} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$			
	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$
dc (dc-13) ■ Rated Operational Voltage Q Rated Operational Current	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.25 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 125 / 250 \mathrm{~V} \\ 0.5 / 0.25 \mathrm{~A} \end{array}$
Backup Fuse Miniature Circuit Breaker	$\begin{aligned} & \text { 6/4/4 A } \\ & 6 / 4 \mathrm{~A} \end{aligned}$	6/4/4 A 6/4 A	6/4/4 A 6/4 A	4 6/4/4 A 6/4 A	4 6/4/4 A 6/4 A

Releases

Undervoltage Releases ("r" Releases) Response Voltage: Drop (Breaker Tripped) U_{S} Pickup (Breaker May Be Switched on) U_{S}	$\begin{array}{\|l} 35-70 \% \\ 85-110 \% \\ \hline \end{array}$	$\begin{array}{\|l} 35-70 \% \\ 85-110 \% \\ \hline \end{array}$	$\begin{array}{\|l} 35-70 \% \\ 85-110 \% \end{array}$	$\begin{array}{\|l} 35-70 \% \\ 85-110 \% \\ \hline \end{array}$	$\begin{array}{\|l} 35-70 \% \\ 85-110 \% \\ \hline \end{array}$
Power Consumption in Continuous Operation at: Maximum Opening Time	$\begin{aligned} & 0.95 \mathrm{VA} \\ & 0.72 \mathrm{VA} \\ & 1.15-1.78 \mathrm{VA} \\ & 0.96-1.25 \mathrm{VA} \\ & 1.28-1.68 \mathrm{VA} \\ & 2.2-3.9 \mathrm{VA} \\ & 3.4-4.3 \mathrm{VA} \\ & 0.88 \mathrm{~W} \\ & 0.70 \mathrm{~W} \\ & 1.12-1.76 \mathrm{~W} \\ & 0.94-1.21 \mathrm{~W} \\ & 1.45-1.86 \mathrm{~W} \\ & 50 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 1.9 \mathrm{VA} \\ & 3.9 \mathrm{VA} \\ & 2.5-3.8 \mathrm{VA} \\ & 1.8-2.4 \mathrm{VA} \\ & 2.7-3.8 \mathrm{VA} \\ & 3.4-5.8 \mathrm{VA} \\ & 3.4-4.3 \mathrm{VA} \\ & 1.6 \mathrm{~W} \\ & 3.1 \mathrm{~W} \\ & 2.0-3.1 \mathrm{~W} \\ & 1.6-2.2 \mathrm{~W} \\ & 3.1-4 \mathrm{~W} \\ & 50 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 1.9 \mathrm{VA} \\ & 3.9 \mathrm{VA} \\ & 2.5-3.8 \mathrm{VA} \\ & 1.8-2.4 \mathrm{VA} \\ & 2.7-3.8 \mathrm{VA} \\ & 3.4-5.8 \mathrm{VA} \\ & 3.4-4.3 \mathrm{VA} \\ & 1.6 \mathrm{~W} \\ & 3.1 \mathrm{~W} \\ & 2.0-3.1 \mathrm{~W} \\ & 1.6-2.2 \mathrm{~W} \\ & 3.1-4 \mathrm{~W} \\ & 50 \mathrm{~ms} \end{aligned}$	1.9 VA 2.4 VA 2.3-4.1 VA 3.4-4.2 VA 4.8-6.5 VA 6.8-12.0 VA 2.6 W 3.6 W $3.5-5.5 \mathrm{~W}$ 2.9-3.6 W 4.8-6.3 W 62 ms	$\begin{aligned} & 2.9 \mathrm{VA} \\ & 3.1 \mathrm{VA} \\ & 3.4-6.0 \mathrm{VA} \\ & 3.3-3.8 \mathrm{VA} \\ & 4.2-7.2 \mathrm{VA} \\ & 3.8-10.0 \mathrm{VA} \\ & -3.4 \mathrm{~W} \\ & 4.3 \mathrm{~W} \\ & 4.8-7.2 \mathrm{~W} \\ & 3.3-3.8 \mathrm{~W} \\ & 6.6-7.5 \mathrm{~W} \\ & 62 \mathrm{~ms} \end{aligned}$

Shunt Trips

Shunt Trips (" f " Releases) Response Voltage: - Pickup (Breaker Tripped) U_{S}	70-110\%	70-110\%	70-110\%	70-110\%	70-110\%
Power Consumption in (Short Time) at: $50 / 60 \mathrm{~Hz} 24 \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} 48-60 \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} 48-127 \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} \mathrm{110-240} \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} 380-440 \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} 380-600 \mathrm{Vac}$ $50 / 60 \mathrm{~Hz} 480-600 \mathrm{Vac}$ $12-24 \mathrm{Vdc}$ $48-60 \mathrm{Vdc}$ $110-125 \mathrm{Vdc}$ $220-250 \mathrm{Vdc}$	$\begin{gathered} 10-41 \mathrm{VA} \\ 139-210 \mathrm{VA} \\ - \\ 83-360 \mathrm{VA} \\ -\quad 418-1080 \mathrm{VA} \\ -\quad 29-120 \mathrm{~W} \\ 475-720 \mathrm{~W} \\ 99-121 \mathrm{~W} \\ - \end{gathered}$	$\begin{gathered} 87-405 \mathrm{VA} \\ 710-1105 \mathrm{VA} \\ - \\ 66-432 \mathrm{VA} \\ 127-188 \mathrm{VA} \\ -34-60 \mathrm{VA} \\ 164-631 \mathrm{~W} \\ 830-1580 \mathrm{~W} \\ 12-150 \mathrm{~W} \\ 40-58 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 87-405 \mathrm{VA} \\ 710-1105 \mathrm{VA} \\ -66-432 \mathrm{VA} \\ 127-188 \mathrm{VA} \\ -34-60 \mathrm{VA} \\ 164-631 \mathrm{~W} \\ 830-1580 \mathrm{~W} \\ 112-150 \mathrm{~W} \\ 40-58 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 98-475 \mathrm{VA} \\ 24-50 \mathrm{VA} \\ - \\ 67-432 \mathrm{VA} \\ 76-110 \mathrm{VA} \\ - \\ 19-42 \mathrm{VA} \\ 145-610 \mathrm{~W} \\ 67-102 \mathrm{~W} \\ 121-150 \mathrm{~W} \\ 46-55 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 612 \mathrm{VA} \\ & 403-666 \mathrm{VA} \\ & -396-1896 \mathrm{VA} \\ & 1596-2156 \mathrm{VA} \\ & - \\ & 230-384 \mathrm{VA} \\ & 396 \mathrm{~W} \\ & 341-528 \mathrm{~W} \\ & 264-350 \mathrm{~W} \\ & 374-475 \mathrm{~W} \end{aligned}$
Maximum Load Duration	Interrupts Automatically				
Maximum Opening Time	50 ms	50 ms	50 ms	62 ms	62 ms
Molded Case Switch (with High Magnetic Trip)					
Unfused kAIC at $480 \mathrm{Vac}(415 \mathrm{Vac})$ Self-Protected, Will Trip Above:	65 (70) 1250 for EG125; 1600 for EG160	$\begin{aligned} & 65(70) \\ & 2500 \end{aligned}$	$\begin{aligned} & \hline 65(70) \\ & 4000 / 6300 \end{aligned}$	$\begin{array}{\|l\|} \hline 65(70) \\ 12,500 \end{array}$	$\begin{aligned} & 65(70) \\ & 20,000 \end{aligned}$

Circuit Breakers \& Supplementary Protectors

 63-250 AmperesJG-Frame

JG-Frame

Eaton's Cutler-Hammer J250

Product Description

■ JG breaker is HACR rated.

Technical Data and Specifications

Table 45-21. UL 489/IEC 60947-2 Interrupting Capacity Ratings

Circuit Breaker Type	Number of Poles	Interrupting Capacity (kA Symmetrical Amperes)								
		Volts ac ($50 / 60 \mathrm{~Hz}$)								$\begin{array}{\|l\|} \hline \text { Volts dc }{ }^{1} \\ \hline \mathbf{2 5 0}{ }^{(2)(3)} \\ \hline \end{array}$
		220-240		380-415		480	600	690		
		$\mathrm{I}_{\mathbf{c u}}$	$\mathrm{I}_{\mathbf{c s}}$	I_{cu}	$\mathrm{I}_{\text {cs }}$			$\mathrm{I}_{\mathbf{c u}}$	$\mathrm{I}_{\text {cs }}$	
JGE250	2, 3, 4	65	65	25	25	25	18	12	6	10
JGS250	2, 3, 4	85	85	40	40	35	18	12	6	22
JGH250	2, 3, 4	100	100	70	70	65	25	14	7	22
JGC250	3, 4	200	200	100	100	100	35	16	12	42
JGU250	3,4	200	200	150	150	150	50	18	14	50
JGX250	3, 4	200	200	200	200	200	50	18	14	50

(1) dc ratings apply to substantially non-inductive circuits.
(2) 2-pole circuit breaker, or two poles of 3-pole circuit breaker.
(3) Time constant is 3 milliseconds minimum at 10 kA and 8 milliseconds minimum at 22 kA .

Dimensions/Weights

Table 45-22. Dimensions in Inches (mm)

Number of Poles	Width	Height	Depth
$2 / 3$	$4.13(104.9)$	$7.00(177.8)$	$3.57(90.7)$
4	$5.34(135.6)$	$7.00(177.8)$	$3.57(90.7)$

Table 45-23. Approximate Shipping Weight in Lbs. (kg)

Breaker Type	Number of Poles	
	$\mathbf{2 / 3}$	$\mathbf{4}$
JGE, JGS, JGH, JGC, JGU, JGX $6(2.7)$	$8(3.6)$	

JG-Frame

Product Selection

Table 45-24. Main Catalog Numbering System

Table 45-25. Trip Unit Catalog Numbering System

Product Selection

Table 45－26．Complete Breaker（Includes Frame，Trip Unit，Standard Terminals and Mounting Hardware）— IC Rating at 415／480 Volts

70	350－700	JGH2070FAG	JGH3070FAG	－	JGH4070FAG	－
90 100	$450-900$ $500-1000$	JGH2090FAG	JGH3090FAG	JGH3100AAG	JGH4090FAG JGH4100FAG	$\overline{J G H 4100 A A G ~}$
125	625－1250	JGH2125FAG	JGH3100FAG	JGH3125AAG	JGH4125FAG	JGH4125AAG
150 160	$750-1550$ $800-1600$	JGH2150FAG	JGH3125FAG	JGH3160AAG	${ }^{\text {JGH4150FAG }}$	$\overline{J G H 4160 A A G ~}$
175	875－1750	JGH2175FAG	－	$\overline{\text { JGHzena }}$	JGH4175FAG	$\overline{J G H 4200 A A G ~}$
200 225	1000－2000	JGH2200FAG	JGH3175FAG	JGH3200AAG	JGH4200FAG	JGH4200AAG
250	1250－2500	JGH2250FAG	JGH3225FAG	JGH3250AAG	JGH4250FAG	JGH4250AAG

IEC／CE／UL／CSA 100／100

IEC／CE／UL／CSA 150／150

70	350－700	－	JGU3070FAG	－	JGU4070FAG	－	
80	400－800	－	JGU3090FAG	JGU3080AAG	JGU4090FAG	JGU4080AAG	
100	500－1000	二	JGU3100FAG	JGU3100AAG	JGU4100FAG	JGU4100AAG	
125	625－1250	－	JGU3125FAG	JGU3125AAG	JGU4125FAG	JGU4125AAG	
150 160	$750-1550$ $800-160$	二	JGU3150FAG	$\overline{J G U 3160 A A G}$	JGU4150FAG	$\overline{J G U 4160 A A G}$	
175	875－1750	－	JGU3175FAG		JGU4175FAG	－JGuteoang	
200 225	$1000-2000$ $1125-2250$	二	JGU3200FAG	JGU3200AAG	JGU4200FAG	\checkmark JGU4200AAG	
250	1250－2500	－	JGU3250FAG	JGU3250AAG	JGU4250FAG	JGU4250AAG	

IEC／CE／UL／CSA 200／200

[^0]
[^0]: （1）Change the fourth digit to 8 for adjustable $0-60 \%$ neutral protection， 9 for $0-100 \%$ neutral protection．Neutral is on LH side． （2）IEC－EN 60947－2 only．Adjustment is .8 and 1．0．

